
November 1999 The Delphi Magazine 51

COM Corner:
Efficient Variants
by Steve Teixeira

We haven’t been very nice to
Variants lately. Oh, sure,

they were our best friend in Delphi
2, when they were the best and
easiest way to call methods on an
Automation object. Then along
came Delphi 3 with its shiny new
interfaces and dispinterfaces, and
Variants immediately became
second class citizens in our COM
world. We began to talk about them
behind their backs. ‘Why on earth
would you use a Variant, when an
interface or dispinterface is so
much more efficient?’ While Vari-
ant is the most flexible of the three,
it is also the least efficient, because
it uses late binding to call Automa-
tion methods. Let’s review the
three types of method call binding
that Automation provides.

Early binding. This is the type of
binding provided by interfaces. It
is generally the most efficient
because methods are called
directly based on the vtable offset.
This means that method offsets
must be known at compile-time.

Late binding. This is the type of
binding used by Variants. There is
no compile-time checking of
method calls. Instead, a method
name is converted at runtime to a

dispid using the IDispatch.GetIDs-
OfNames method, and the resultant
dispid is passed to the IDispatch.-
Invoke method to execute it.

ID binding. This is the type of
binding used by dispinterfaces.
Like late binding, methods are exe-
cuted through IDispatch.Invoke
rather directly through the vtable,
however, the dispid is known at
compile-time, which obviates the
need for a runtime call to
GetIDsOfNames. This makes method
calls through ID binding more
efficient than late binding, but still
less efficient than early binding.

Despite the bad things we may
say about Variants when they’re
not around, they can be pretty
useful. After all, they enable us to
call an Automation method simply
by name, without having to link in
other files, such as a type library
import file. If only they could be
made to function more efficiently,
perhaps they would find their way
back into our good graces.

Like any good developer looking
to optimize code, we should first
pinpoint exactly what makes the
code in question so slow before we
try to optimize. Based on the above
description of method bindings,
it’s not difficult to determine that
Variants are inefficient because

they use late binding, which must
call IDispatch.GetIDsOfNames and
IDispatch.Invoke for every method
call. This is necessary because
there needs to be a way to call a
method based on a string contain-
ing the method name. However,
the problem is that GetIDsOfNames
is called every time you call a func-
tion, even if you call the same func-
tion 1,000 times! What would be
nice is if GetIDsOfNames were called
only the first time, and Variant
remembered the dispid for
subsequent calls, to shortcut the
process, improving performance.

Caching Dispids
You might recall from COM Corner
in July 1999 (Issue 47) that Delphi
provides a means for hooking into
the function called by the compiler
to invoke Automation methods on
Variants. The compiler generates
code to call Automation methods
from Variants by calling through
the VarDispProc pointer in the
Systemunit. The ComObjunit assigns
a procedure called VarDispInvoke
to this pointer, and it is that proce-
dure that normally handles calls to
all Automation methods. If you
browse the source code for this
method, you will be able to see for
yourself that its primary goal in life
is to call GetIDsOfNames to obtain a
dispid from a name and Invoke to
execute the Automation method.
However, since this method is
called only through the VarDisp-
Proc pointer, there is nothing to
stop you assigning your own
method to this pointer to perform
some custom behavior when an
Automation method is invoked. In
other words, it is a window into a
Variant’s inner workings that will
enable us to cache dispids.

Listing 1 shows the source code
for the VarCache unit, which con-
tains all the logic necessary for
dispid caching (the code is on the
disk too). I’ll take this unit one step
at a time to explain the processes
involved in caching dispids and
streamlining the VarDispProc to
take advantage of the cache.

The first step is to create the
objects necessary to encapsulate
the dispid cache. These are found
at the top of the unit in the form of

Field Purpose

FDispValue Represents the IDispatch pointer value contained within the
Variant.

FRefCount Contains the reference count of this class. A reference count is
used because it is possible to have multiple Variants with
references to the same instance of an Automation object.

FDispIds A string list that contains the name/dispid mappings for the
Variant. A string list is convenient since it provides a pre-built
object that handles the correlation of text and a pointer, and
issues such as sorting are handled automatically.

FNext A pointer to the next object in the linked list.

FPrev A pointer to the previous object in the linked list.

FOwner A back-pointer to the owning TVariantCache object.

➤ Table 1

52 The Delphi Magazine Issue 51

the TVariantEntry and TVariant-
Cache classes. TVariantEntry
encapsulates the properties of a
single instance of a Variant. This
class contains the private fields
shown in Table 1.

This class also contains the
GetIdsOfNames method, which gets
a name/dispid mapping from the
internal string list, returning True
on success.

As you may be able to divine
from the FNext and FPrev fields, this
class is intended to be used in the
context of a linked list. The next
object in the unit, TVariantCache,
encapsulates this list, which is
actually a circular doubly-linked
list (ie, each node contain pointers
to the previous and next nodes in
the list, and the first and last nodes
point to each other). This struc-
ture allows the complete list to be
traversed in either direction given
a pointer to any node in the list.
The FVariantEntries fields of this
class contain a reference to a node
in the list. For maximum efficiency,
the code is written such that this

field always contains the node that
was most recently added or found.
This means multiple calls in a row
to the same Variant don’t have to
walk the list to find the instance:
the most recent is always the first.

The TVariantCache class also
contains Add, Remove, and Find
methods, which work by taking an
OleVariant as a parameter and
matching it to the correct TVar-
iantEntry in the FVariantEntries
list. A global instance, called
VariantCache, of the TVariantCache
class is created in the initializa-
tion code for the VarCache unit.

Once you understand how these
two classes work, the CachingVar-
DispInvoke procedure will make
more sense. This is the procedure
which is assigned to System’s
VarDispProc pointer in order to
handle Variant Automation calls. It
first checks to ensure the Variant
contains the correct type. It then
looks for the Variant in the
VariantCache global list. If found, it
attempts to short-circuit the call to
IDispatch.GetIDsOfName by looking
in its own list for the name/dispid
mapping. If found, it directly

calls Invoke. Otherwise, it calls
IDispatch.GetIDsOfNames and adds
the name/dispid pair to the cache.

The remainder of the code in
this unit deals with the cleanup of
the Variant from the cache when
the Variant itself is cleared. This
process is quite a bit more compli-
cated than the dispid caching
scheme I just discussed. It works
by hooking into the System unit’s
_VarClr procedure and writing
instructions over the top of
_VarClr in order to cause the flow
of execution to jump to my own
procedure, called MyVarClear. The
compiler automatically generates
a call to _VarClr when a Variant is
cleared or goes out of scope, so it’s
a natural place to patch. The code
that performs the runtime patch is
located in the RemapVarClrProc,
which creates a byte array contain-
ing the instructions to jump to
MyVarClear and writes those
instructions over the top of the
original contents of _VarClr.

Allow me to be the first to admit
that this technique, to put it nicely,
is a real kludge, but there is no
other way to hook into the clearing

unit VarCache;
interface
uses Windows, Classes, ActiveX;
type
TVariantCache = class;
TVariantEntry = class(TObject)
private
FDispValue: Pointer;
FRefCount: Integer;
FDispIds: TStringList;
FNext: TVariantEntry;
FPrev: TVariantEntry;
FOwner: TVariantCache;

public
constructor Create(const V: OleVariant; PrevEntry:
TVariantEntry; AOwner: TVariantCache);

destructor Destroy; override;
function GetIdsOfNames(Names: PChar; DispIDs:
PDispIDList): Boolean;

end;
TVariantCache = class(TObject)
private
FVariantEntries: TVariantEntry;

public
function Add(const V: OleVariant; Names: PChar; DispIDs:
PDispIDList; Length: Integer): TVariantEntry;

procedure Remove(const V: OleVariant);
function Find(const V: OleVariant): TVariantEntry;

end;
implementation
uses
ComObj, SysUtils, ComConst;

type
TDynDispIDList = array of TDispID;

const
MemSize = 6;

var
OldVarClear, NewVarClear: PByte;
VarClearCode: array[1..MemSize] of Byte;
VariantCache: TVariantCache;

constructor TVariantEntry.Create(const V: OleVariant;
PrevEntry: TVariantEntry; AOwner: TVariantCache);

begin
FOwner := AOwner;
FDispValue := TVarData(V).VDispatch;
FRefCount := 1;
FDispIds := TStringList.Create;

FDispIds.Duplicates := dupError;
FDispIDs.Sorted := True;
if PrevEntry <> nil then begin
FPrev := PrevEntry;
if PrevEntry.FNext = nil then
FNext := PrevEntry

else
FNext := PrevEntry.FNext;

FNext.FPrev := Self;
PrevEntry.FNext := Self;

end;
end;
destructor TVariantEntry.Destroy;
var
I: Integer;
List: TDynDispIdList;

begin
List := nil;
for I := FDispIds.Count - 1 downto 0 do begin
TObject(List) := FDispIds.Objects[I];
List := nil;

end;
FDispIDs.Free;
inherited Destroy;
if FNext <> nil then begin
if FNext.FNext = Self then begin
FNext.FNext := nil;
FNext.FPrev := nil;

end else begin
FNext.FPrev := FPrev;
FPrev.FNext := FNext;

end;
FOwner.FVariantEntries := FNext;

end else
FOwner.FVariantEntries := nil;

end;
function TVariantEntry.GetIdsOfNames(Names: PChar;
DispIDs: PDispIDList): Boolean;

var
Index: Integer;
ArrayObj: TObject;

begin
Result := FDispIds.Find(Names, Index);
if Result then begin
ArrayObj := FDispIds.Objects[Index];

{ Continued on page 54...}

➤ Listing 1: VarCache.pas

54 The Delphi Magazine Issue 51

{ Continued from page 52}
Move(TDynDispIdList(ArrayObj)[0], DispIDs^,
Length(TDynDispIdList(ArrayObj)) * SizeOf(TDispID));

end;
end;
function TVariantCache.Add(const V: OleVariant; Names:
PChar; DispIDs: PDispIDList; Length: Integer):
TVariantEntry;

var
List: TDynDispIdList;
Index: Integer;

begin
Result := Find(V);
SetLength(List, Length);
Move(DispIDs^, List[0], Length * SizeOf(TDispID));
if Result <> nil then begin
Inc(Result.FRefCount);
if not Result.FDispIds.Find(Names, Index) then
Result.FDispIds.AddObject(Names, TObject(List));

end else begin
Result := TVariantEntry.Create(V,FVariantEntries,Self);
Result.FDispIds.AddObject(Names, TObject(List));

end;
// prevent automatic cleanup of dynamic array
Pointer(List) := nil;
FVariantEntries := Result;

end;
function TVariantCache.Find(const V: OleVariant):
TVariantEntry;

var VarEntry: TVariantEntry;
begin
Result := nil;
if FVariantEntries <> nil then begin
VarEntry := FVariantEntries;
repeat
if VarEntry.FDispValue = TVarData(V).VDispatch
then begin
Result := VarEntry;
FVariantEntries := Result;
Exit;

end;
VarEntry := VarEntry.FNext;

until (VarEntry = FVariantEntries) or (VarEntry = nil);
end;

end;
procedure TVariantCache.Remove(const V: OleVariant);
var VarEntry: TVariantEntry;
begin
if TVarData(V).VType = varDispatch then begin
VarEntry := Find(V);
if VarEntry <> nil then begin
Dec(VarEntry.FRefCount);
if VarEntry.FRefCount = 0 then VarEntry.Free;

end;
end;

end;
procedure RemoveVariantFromCache(var V: Variant);
begin
VariantCache.Remove(V);

end;
procedure MyVarClear;
asm
push eax // save registers
push edx
mov edx, eax // put Variant in edx
lea eax, VariantCache // put VariantCache object

// self in eax
call TVariantCache.Remove // call Remove
mov eax, edx // put Variant back in eax
pop edx
call System.@VarClear // do normal variant clearing logic
pop eax

end;
procedure RemapVarClrProc;
var
JmpInst: array[1..MemSize] of Byte;
OldProtect: DWORD;
NewPtr: PByte;

begin
// NewFoo holds addr of MyVarClear
NewVarClear := @MyVarClear;
// NewPtr holds addr of NewVarClear
NewPtr := @NewVarClear;
// set up array containing opcodes for jump...
JmpInst[1] := $FF; // jmp
JmpInst[2] := $25; // dword ptr
Move(NewPtr, JmpInst[3], SizeOf(NewPtr)); // [NewFoo]
// Put address of _VarClr into OldVarClear
asm
push eax
mov eax, offset System.@VarClr
mov OldVarClear, eax
pop eax

end;
// enable read/write/execute permission on _VarClr code
Win32Check(VirtualProtect(OldVarClear, MemSize,
PAGE_EXECUTE_READWRITE, @OldProtect));

// Read old VarClr code
Move(OldVarClear^, VarClearCode, MemSize);
// Patch VarClr with new jmp code
Move(JmpInst, OldVarClear^, MemSize);

end;
// GetIDsOfNames wrapper taken from ComObj.pas
procedure GetIDsOfNames(const Dispatch: IDispatch; Names:
PChar; NameCount: Integer; DispIDs: PDispIDList);
procedure RaiseNameException;
begin
raise EOleError.CreateResFmt(@SNoMethod, [Names]);

end;
type
PNamesArray = ^TNamesArray;
TNamesArray = array[0..0] of PWideChar;

var
N, SrcLen, DestLen: Integer;
Src: PChar;
Dest: PWideChar;
NameRefs: PNamesArray;
StackTop: Pointer;
Temp: Integer;

begin
Src := Names;
N := 0;
asm
MOV StackTop, ESP
MOV EAX, NameCount
INC EAX
SHL EAX, 2 // sizeof pointer = 4
SUB ESP, EAX
LEA EAX, NameRefs
MOV [EAX], ESP

end;
repeat
SrcLen := StrLen(Src);
DestLen :=
MultiByteToWideChar(0, 0, Src, SrcLen, nil, 0) + 1;

asm
MOV EAX, DestLen
ADD EAX, EAX
ADD EAX, 3 // round up to 4 byte boundary
AND EAX, not 3
SUB ESP, EAX
LEA EAX, Dest
MOV [EAX], ESP

end;
if N = 0 then
NameRefs[0] := Dest
else
NameRefs[

NameCount - N] := Dest;
MultiByteToWideChar(0, 0, Src, SrcLen, Dest, DestLen);
Dest[DestLen-1] := #0;
Inc(Src, SrcLen+1);
Inc(N);

until N = NameCount;
Temp := Dispatch.GetIDsOfNames(GUID_NULL, NameRefs,
NameCount, GetThreadLocale, DispIDs);

if Temp = Integer(DISP_E_UNKNOWNNAME) then
RaiseNameException else OleCheck(Temp);

asm
MOV ESP, StackTop

end;
end;
procedure CachingVarDispInvoke(Result: PVariant; const
Instance: Variant; CallDesc: PCallDesc; Params: Pointer);
cdecl;
procedure RaiseException;
begin
raise EOleError.CreateRes(@SVarNotObject);

end;
var
Dispatch: Pointer;
DispIDs: array[0..63] of Integer;
VarEntry: TVariantEntry;
Names: PChar;
Count: Integer;

begin
if TVarData(Instance).VType = varDispatch then
Dispatch := TVarData(Instance).VDispatch

else if TVarData(Instance).VType = (varDispatch or
varByRef) then
Dispatch := Pointer(TVarData(Instance).VPointer^)

else
RaiseException;

Names := @CallDesc^.ArgTypes[CallDesc^.ArgCount];
Count := CallDesc^.NamedArgCount + 1;
VarEntry := VariantCache.Find(Instance);
if (VarEntry = nil) or
(not VarEntry.GetIdsOfNames(Names, @DispIDs)) then begin
GetIDsOfNames(IDispatch(Dispatch), Names, Count,
@DispIDs);

VariantCache.Add(Instance, Names, @DispIDs, Count);
end;
if Result <> nil then VarClear(Result^);
DispatchInvoke(IDispatch(Dispatch), CallDesc, @DispIDs,
@Params, Result);

end;
initialization
VariantCache := TVariantCache.Create;
RemapVarClrProc;
VarDispProc := @CachingVarDispInvoke;

finalization
VariantCache.Free;

end.

November 1999 The Delphi Magazine 55

of a Variant in order to clean up the
cache. This technique is also
highly dependent on how the code
is compiled, so the implementation
shown in VarCache.pas works only
with Delphi 5 (although it would be
possible to do this with other
versions).

The MyVarClear procedure
adjusts the list for the Variant
which is being cleared (by decre-
menting the reference count of,
and, if necessary, deleting the
TVariantEntry object).

In order to take advantage of
the performance improvements

provided by dispid caching, I feel
it’s important that users shouldn’t
have to change the way they work.
For that reason, the VarCacheunit is
written in such a way that all you
need to do is add it to a uses clause
in your application in order to
receive its benefits. To test the
unit, I wrote the few lines of code
shown in Listing 2 that communi-
cate with the Word 2000 automa-
tion server and perform a single
task repeatedly.

Without the VarCache unit in my
project, this code takes about
5,500 milliseconds to run on my
Pentium II 400MHz machine. How-
ever, after adding the VarCache unit
to my project, the execution time
drops to the 3,200 millisecond
neighborhood, showing a hefty
efficiency gain for an Automation
method which is called repeatedly
in a tight loop.

If you have an application which
is written such that Automation
methods are not called many
times, then dispid caching will help
little on that particular project.
The more individual methods are

called on the same Variant, the
better performance should be
boosted.

Summary
No longer does Variant have to
hang its head as ‘that really ineffi-
cient way to do Automation.’ With
the help of dispid caching, Vari-
ants can approach the efficiency of
dispinterfaces, but with the inher-
ent advantages of truly late bind-
ing. Hopefully, this new technique
will make it feasible for you to use
Variants in cases where you previ-
ously thought it prohibitively inef-
ficient. And of course, regardless
of how it helps our real work, it’s
always fun to get under the hood
and see how far we can stretch
Delphi’s Automation capabilities.

Steve Teixeira is the VP of soft-
ware development at DeVries
Data Systems in Silicon Valley, and
co-author of the upcoming Delphi
5 Developer’s Guide. You can
reach Steve at steve@dvdata.com

procedure TForm1.Button1Click(
Sender: TObject);

var
V1: OleVariant;
I: Integer;
T1: Cardinal;

begin
V1 := CreateOleObject(
'Word.Application');

T1 := GetTickCount;
for I := 1 to 1000 do
V1.Caption := V1.Caption + 'x';

Caption :=
IntToStr(GetTickCount - T1);

V1.Visible := True;
end;

➤ Listing 2

	Caching Dispids
	Summary

